4.4 Classical DSB-SC Modulators

To produce the modulated signal $A_{c} \cos \left(2 \pi f_{c} t\right) m(t)$, we may use the following methods which generate the modulated signal along with other signals which can be eliminated by a bandpass filter restricting frequency contents to around f_{c}.
4.50. Multiplier Modulators [5, p 184] or Product Modulator [3, p 180]: Here modulation is achieved directly by multiplying $m(t)$ by $\cos \left(2 \pi f_{c} t\right)$ using an analog multiplier whose output is proportional to the product of two input signals.

- Such a multiplier may be obtained from
(a) a variable-gain amplifier in which the gain parameter (such as the the β of a transistor) is controlled by one of the signals, say, $m(t)$. When the signal $\cos \left(2 \pi f_{c} t\right)$ is applied at the input of this amplifier, the output is then proportional to $m(t) \cos \left(2 \pi f_{c} t\right)$.
(b) two logarithmic and an antilogarithmic amplifiers with outputs proportional to the \log and antilog of their inputs, respectively.
- Key equation:

$$
A \times B=e^{(\ln A+\ln B)}
$$

4.51. Square Modulator: When it is easier to build a squarer than a multiplier, use

$$
\begin{aligned}
\left(m(t)+c \cos \left(\omega_{c} t\right)\right)^{2} & =m^{2}(t)+2 c m(t) \cos \left(\omega_{c} t\right)+c^{2} \cos ^{2}\left(\omega_{c} t\right) \\
& =m^{2}(t)+2 c m(t) \cos \left(\omega_{c} t\right)+\frac{c^{2}}{2}+\frac{c^{2}}{2} \cos \left(2 \omega_{c} t\right)
\end{aligned}
$$

Using a band-pass filter (BPF) whose frequency response is

$$
H_{B P}(f)= \begin{cases}g, & \left|f-f_{c}\right| \leq B \\ g, & \left|f-\left(-f_{c}\right)\right| \leq B \\ 0, & \text { otherwise }\end{cases}
$$

we can produce $2 \operatorname{cgm}(t) \cos \left(\omega_{c} t\right)$ at the output of the BPF. Choosing the gain g to be $(c \sqrt{2})^{-1}$, we get $m(t) \times \sqrt{2} \cos \left(\omega_{c} t\right)$.

- Alternative, can use $\left(m(t)+c \cos \left(\frac{\omega_{c}}{2} t\right)\right)^{3}$.
4.52. Another conceptually nice way to produce a signal of the form $A_{c} m(t) \cos \left(\omega_{c} t\right)$ is to (1) multiply $m(t)$ by "any" periodic and even signal $r(t)$ whose period is $T_{c}=\frac{2 \pi}{\omega_{c}}$ and (2) pass the result though a BPF. Because $r(t)$ is an even function, we know that

$$
r(t)=c_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \omega_{c} t\right) \text { for some } c_{0}, a_{1}, a_{2}, \ldots
$$

Therefore,

Figure 20: Modulation of $m(t)$ via even and periodic $r(t)$
See also [4, p 157]. In general, for this scheme to work, we need

- $a_{1} \neq 0$; that is T_{c} is the "least" period of r;
- $f_{c}>2 B$ (to prevent overlapping).

Note that if $r(t)$ is not even, then by (43c), the outputted modulated signal is of the form $a_{1} m(t) \cos \left(\omega_{c} t+\phi_{1}\right)$.
4.53. Switching modulator: An example of a periodic and even function $r(t)$ is the square pulse train considered in Example 4.43. Recall that multiplying this $r(t)$ to a signal $m(t)$ is equivalent to switching $m(t)$ on and off periodically.

4.54. Switching Demodulator: The switching technique can also be used at the demodulator as well.

We have seen that, for DSB-SC modem, the key equation is given by (34). When switching demodulator is used, the key equation is

$$
\operatorname{LPF} A_{\begin{array}{c}
\text { Y(t) } \tag{52}\\
\begin{array}{c}
\text { (the received } \\
\text { signal }
\end{array}
\end{array} \begin{array}{c}
61 \text { the ON-OFF } \\
\text { operation }
\end{array}}^{\operatorname{Lt)\operatorname {cos}(\omega _{c}t)}} \times \underbrace{\left[\cos \left(\omega_{c} t\right) \geq 0\right]}\}=\frac{A_{c}}{\pi} m(t)
$$

[4, p 162].

$$
\begin{aligned}
& \begin{array}{l}
r(t)=\frac{1}{2}+\frac{2}{\pi} \cos \left(2 \pi f_{c} t\right)-\frac{2}{3 \pi} \cos \left(2 \pi\left(3 f_{c}\right) t\right)+\frac{2}{5 \pi} \cos \left(2 \pi\left(5 f_{c}\right) t\right)+\cdots \\
y(t) r(t)=\frac{1}{2} y(t)+\frac{2}{\pi} y(t) \cos \left(2 \pi f_{c} t\right)-\frac{2}{3 \pi} y(t) \cos \left(2 \pi\left(3 f_{c}\right) t\right)+\frac{2}{5 \pi} y(t) \cos \left(2 \pi\left(5 f_{c}\right) t\right)+\cdots
\end{array} \\
& =\frac{1}{2} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \quad=\frac{1}{2} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \\
& +\frac{2}{\pi} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi f_{c} t\right) \\
& -\frac{2}{3 \pi} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi\left(3 f_{c}\right) t\right) \\
& +\frac{1}{\pi} A_{c} m(t)\left(1+\cos \left(2 \pi\left(2 f_{c}\right) t\right)\right) \\
& -\frac{1}{3 \pi} A_{c} m(t)\left(\cos \left(2 \pi\left(2 f_{c}\right) t\right)+\cos \left(2 \pi\left(4 f_{c}\right) t\right)\right) \\
& +\frac{2}{5 \pi} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi\left(5 f_{c}\right) t\right)+\cdots \quad+\frac{1}{5 \pi} A_{c} m(t)\left(\cos \left(2 \pi\left(4 f_{c}\right) t\right)+\cos \left(2 \pi\left(6 f_{c}\right) t\right)\right)+\cdots \\
& =\frac{1}{2} A_{c} m(t) \cos \left(2 \pi f_{c} t\right) \\
& +\frac{1}{\pi} A_{c} m(t)+\frac{1}{\pi} A_{c} m(t) \cos \left(2 \pi\left(2 f_{c}\right) t\right) \\
& -\frac{1}{3 \pi} A_{c} m(t) \cos \left(2 \pi\left(2 f_{c}\right) t\right)-\frac{1}{3 \pi} A_{c} m(t) \cos \left(2 \pi\left(4 f_{c}\right) t\right) \\
& +\frac{1}{5 \pi} A_{c} m(t) \cos \left(2 \pi\left(4 f_{c}\right) t\right)+\frac{1}{5 \pi} A_{c} m(t) \cos \left(2 \pi\left(6 f_{c}\right) t\right)+\cdots
\end{aligned}
$$

Note that this technique still requires the switching to be in sync with the incoming cosine as in the basic DSB-SC.

